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SAGE III on ISS Overview

• Atmospheric science payload set for delivery to ISS via 

Space X Falcon 9 launch vehicle in 2016

• Fifth in a series of instruments developed to monitor 

ozone and other trace gases in Earth’s stratosphere and 

troposphere

• Three year minimum lifespan, five year goal
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Instrument Payload
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Interface Adapter Module

• Serves as on-orbit flight director of Instrument Payload

• Surface properties: AgFEP + MLI

• Power dissipation: +100 W

(max design)

• Expected on-orbit 

operational temperature 

range:  -5°C to +40°C
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IAM mounting flange



Interface Adapter Module (cont’d)

• Design Challenges:

– Heat rejection via radiation alone insufficient

– Conduction through dry IAM-ExPA interface also

insufficient

– Large span between fasteners (approx. 20”)

– Rigid footprint area (no room for expansion)

– Measured flatness variation larger than expected

• Driving IAM-ExPA Interface Requirements

– High thermal and electrical conductance 

(for grounding purposes)

– Low outgassing, silicone-free materials
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Interface Materials – What, When, Why?

• What is a thermal interface material (TIM)?

– TIMs, or “gap fillers”, refer to any material placed between objects with the intent 

of increasing the thermal conductance through the interface

– Very common; a large assortment of TIMs are readily available and include 

compressible metals, elastomerics, epoxies, thermal grease, and more

– Increases contact area > increases conductance > decreases delta T through 

interface

• When should you use them?

– Any time low thermal resistance is desired through an interface, but is not 

achievable or guaranteed from bare contact

– Example applications:

• Connecting heat generating components to heat sink

• Attaching heat pipes or thermal straps to radiator

• Mounting electronics boxes, TECs, many more

• Why should you use them?

– Can remove uncertainty and increase confidence 

in analysis

– Many are relatively low cost, widely available, and 

easy to implement
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Credit:  Spacecraft Thermal Control Handbook, Vol. I



• Baseline Configuration

– Bolted interface with 99.9% indium foil, 0.010” thick

– Chosen for its high conductivity (~80 W/m-K) and space flight heritage

• Concerns:

– Indium is subject to cold flow, resulting in a loss of preload over time 

due to thermal cycling, vibration testing

– By covering blind holes in ExPA, potential for entrapped gas is 

introduced

Baseline Interface Configuration
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2nd Design Iteration

• Replaced indium foil with Gap Pad 2200SF

– Silicone-free thermal pad available in a wide range of thicknesses; good 

conductance when compressed

• Added 0.016” thick metal shims to control pad compression (not to 

exceed 40% of original thickness) and to provide grounding path

• Added filler plate to increase contact area based on results of trade 

study

• Concerns

– Previous experience suggested possible issue with high vacuum 

environment

– No known spaceflight heritage
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Gap Pad Performance Testing

• Subjected uncompressed and compressed GP 2200SF specimens 

to < 1e-5 Torr and 100°C for approximately 72 hours

• Specimens were compressed to 10%, 30%, 50%, 

and 70% compression

• Following bakeout, test specimens were tested

for thermophysical properties testing (ρ, Cp, k)

then compared to virgin material
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Gap Pad Performance Test Results

• After 72 hours, yellow condensate 

formed on oven surfaces

• Uncompressed material specimens became 

hard and brittle and experienced up to 80%

increase in conductivity compared to virgin 

material

• Compressed specimens retained elasticity

(diffusion-limited) and experienced up to 30% increase in 

conductivity compared to virgin material

• Concluded that GP 2200SF was not 

well suited for the SAGE III mission 

environment
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Final Interface Configuration

• Replaced GP 2200SF with NuSil CV-2946

– Thermally conductive, platinum impregnated

silicone 

– Lots of spaceflight heritage, good thermal 

conductance

– Easily removed from flight hardware without 

release agent (in absence of primer)

• SAGE team members traveled to GSFC for 

hands-on NuSil application training

• Performed several practice applications to

develop procedure

• Used a combination of application methods:

– Troweling/screeding method over large acreage

– Striping method over filler plate

• NuSil interface configuration verified during 

subsystem-level thermal-vacuum testing

• IAM was successfully integrated with

Instrument Payload 
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IAM Integrated with Instrument Payload
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Lessons Learned

• Collaborate with other disciplines on the team early in 

the design phase to ensure thermal considerations are 

taken into account

• Selecting interface materials with proven track record 

has its advantages

• Avoid large distances between fasteners

• Tight flatness and surface roughness specification can 

minimize thickness of interface material and increase 

available options

• Beware of cold flow when using indium foil; may 

experience loss of preload during thermal cycling or vibe

• Gap Pad 2200SF loses much of its elasticity from 

outgassing during bakeout testing, but increases in 

conductivity
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